Workspace analysis of fully restrained cable-driven manipulators
نویسندگان
چکیده
For Cable-Driven Parallel Manipulators (CDPMs), employing redundant driving cables is necessary to obtain the full manipulation of the moving platform because of the unilateral driving property of the cables. Unlike rigid-link manipulators, the workspace of CDPMs is always determined and characterized by positive tension status of driving cables. In addition, it has been realized that the Tension Factor (TF) reflecting the relative tension distribution among the driving cables is an appropriate measure to evaluate the quality of tension restraint for CDPMs. However, since redundant cables are employed to drive the moving platform, the TF values are not unique for a particular moving platform pose. Therefore, how to determine the workspace and obtain the optimal TF value so as to generate a workspace with optimized performance become the major subjects of this paper. It is shown that the workspace can be generally formed from tension conditions verified by a recursive dimension-reduction approach and that the optimal TF value at every pose can be efficiently determined through a linear optimization approach, although it is essentially a nonlinear optimization problem. Computational examples are provided to demonstrate the effectiveness of the proposed algorithms. © 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Interval Analysis of Controllable Workspace for Cable Robots
Workspace analysis is one of the most important issues in the robotic parallel manipulator design. However, the unidirectional constraint imposed by cables causes this analysis more challenging in the cabledriven redundant parallel manipulators. Controllable workspace is one of the general workspace in the cabledriven redundant parallel manipulators due to the dependency on geometry parameter...
متن کاملStability Analysis and Robust PID Control of Cable Driven Robots Considering Elasticity in Cables
In this paper robust PID control of fully-constrained cable driven parallel manipulators with elastic cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can be approximated by linear axial spring. To develop the idea of control for cable robots with elastic cables, a robust PID control for cable driven robots with ideal rigid cables is firstly de...
متن کاملWrench-Closure Workspace Generation for Cable Driven Parallel Manipulators using a Hybrid Analytical-Numerical Approach
In this paper, a technique to generate the wrench-closure workspace for general case completely restrained cable driven parallel mechanisms is proposed. Existing methods can be classified as either numerically or analytically based approaches. Numerical techniques exhaustively sample the task space, which can be inaccurate due to discretisation and is computationally expensive. In comparison, a...
متن کاملWorkspace quality analysis and application for a completely restrained 3-Dof planar cable-driven parallel manipulator
Workspace quality analysis and application for a completely restrained 3-Dof planar cable-driven parallel manipulator Xiaoqiang Tang, Lewei Tang, Jinsong Wang and Dengfeng Sun The State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China School of Aeronautics and Astronautics Engineering, Purdue University, West Lafayette, IN 47907-2045...
متن کاملDynamic Analysis and Control of Cable Driven Robots with Elastic Cables
In this paper modeling and control of cable driven redundant parallel manipulators with flexible cables, are studied in detail. Based on new results, in fully constrained cable robots, cables can be modeled as axial linear springs. Considering this assumption the system dynamics formulation is developed using Lagrange approach. Since in this class of robots, all the cables should remain in tens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Robotics and Autonomous Systems
دوره 57 شماره
صفحات -
تاریخ انتشار 2009